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Abstract

A multicriteria optimization problem is called Pareto reducible if its weakly
efficient solutions are Pareto solutions of the problem itself or a subproblem obtained
from it by selecting certain criteria. The aim of this paper is to introduce a similar
concept of Pareto reducibility for a class of vector variational inequalities.
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1 Multicriteria optimization problems

Consider a vector function, f = (f1, . . . , fm) : D → Rm, defined on a nonempty set D
and taking values in the m-dimensional real Euclidean space Rm (m ∈ N, m ≥ 2).

For convenience, denote Km := {1, . . . ,m}. Whenever K ⊂ Km will be a nonempty
set of indices, with cardinality |K| = k, the notation fK will represent the function
fK = (fi1 , . . . , fik) : D → Rk, where i1, . . . , ik are implicitly defined by

K = {i1, . . . , ik} and i1 < . . . < ik.

∗The first author’s research was partially supported by the grant CNCSIS ID-2261, 543/2009, this
work being initiated while N. Popovici was Guest Fellow of the Department of Economics of Insubria
University in 2009.
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To each such a selection of indices, we associate an optimization problem:

(PK)

{
Minimize fK(x)
subject to x ∈ D.

Notice that (PK) is a scalar optimization problem if K is a singleton, otherwise being a
vector optimization problem.

As usual in Vector Optimization (see, e.g., [7]), the set of Pareto solutions (also called
efficient solutions) of (PK) is given by

Eff(PK) := {x0 ∈ D | @ x ∈ D : fK(x) ∈ fK(x0)− Rk
+ \ {0}}

while that of weakly efficient solutions is defined as

w-Eff(PK) := {x0 ∈ D | @ x ∈ D : fK(x) ∈ fK(x0)− int Rk
+}.

Since fKm = f , it follows that whenever K 6= Km the optimization problem (PK) can be
regarded as a subproblem (i.e., a reduced problem) obtained from

(PKm)

{
Minimize f(x)
subject to x ∈ D

by eliminating certain criteria.
It is easily seen that, for every nonempty subset K of Km, one has

Eff(PK) ⊂ w-Eff(PK) ⊂ w-Eff(PKm). (1)

According to Popovici [8], the multicriteria optimization problem (PKm) is said to be
Pareto reducible if

w-Eff(PKm) =
⋃

∅6=K⊂Km

Eff(PK), (2)

which means that every weakly efficient solution of (PKm) actually is a Pareto solution of
(PKm) or it is a Pareto solution for at least one subproblem of type (PK), where K is a
proper subset of Km.

Obviously, the inclusion ”⊃” in (2) is always true, as shown by (1). However, in order
to establish the inclusion ”⊂” in (2), some additional assumption have to be imposed on
the objective function f .

Motivated by the practical importance of location problems, the relation (2) has been
proven by Lowe et al. in [6] by assuming that all scalar components of f are convex, in
this case the proof being based on the classical weighting scalarization method. Since
this scalarization method cannot be applied for general nonconvex problems, some other
appropriate generalized convexity assumptions have been identified in [9], [10], and [4],
in order to obtain sufficient conditions for the Pareto reducibility of the multicriteria
optimization problem (PKm).
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2 Vector variational inequalities

Throughout this section D will be a nonempty closed convex subset of the n-dimensional
real Euclidean space Rn, which will be endowed with the usual inner product 〈·, ·〉.

Let F1 : D → Rn, . . . , Fm : D → Rn some vector-valued functions (m ∈ N, m ≥ 2).
For all x ∈ D and y ∈ Rn, denote

F (x)(v) := (〈F1(x), y〉, . . . , 〈Fm(x), y〉) ∈ Rm (3)

and consider the following vector variational inequalities (see [2] and [1], respectively):

(VVI) Find x̄ ∈ D such that F (x̄)(x− x̄) /∈ −Rm
+ \ {0}, ∀x ∈ D;

(w-VVI) Find x̄ ∈ D such that F (x̄)(x− x̄) /∈ −int Rm
+ , ∀x ∈ D.

Let us denote by Sol(VVI) := {x̄ ∈ D | F (x̄)(x − x̄) /∈ −Rm
+ \ {0}, ∀x ∈ D} and

Sol(w-VVI) := {x̄ ∈ D | F (x̄)(x − x̄) /∈ −int Rm
+ , ∀x ∈ D} the solution sets of the above

vector variational inequalities.

Following the scalarization approach proposed by Lee et al. in [5], we will associate
to each vector ξ = (ξ1, . . . , ξm) ∈ Rm

+ the following variational inequality:

(VIξ) Find x̄ ∈ D such that 〈
∑m

i=1ξiFi(x̄), x− x̄〉 ≥ 0, ∀x ∈ D.

Notice that (VIξ) is a variational inequality in the classical sense, as considered in [3]. Let
Sol(VIξ) := {x̄ ∈ D | 〈

∑m
i=1ξiFi(x̄), x− x̄〉 ≥ 0, ∀x ∈ D} be the solution set of (VIξ).

The following preliminary result has been established by Lee et al. ([5], Theorem 2.1).

Lemma 1 The following relations hold true:⋃
ξ∈ int Rm

+

Sol(VIξ) ⊂ Sol(VVI) ⊂ Sol(w-VVI) =
⋃

ξ∈Rm
+ \{0}

Sol(VIξ). (4)

As we have seen in Section 1, a multicriteria optimization problem can be decomposed
into subproblems obtained from the original one by eliminating certain criteria. Similarly,
we will associate to each nonempty set of indices K = {i1, . . . , ik} ⊂ Km := {1, . . . ,m}
(where it is implicitly understood that i1 < . . . < ik) two variational inequalities, which
can be viewed as subproblems of the vector variational inequalities (VVI) and (w-VVI).
To this aim, we define for all x ∈ D and y ∈ Rn the following point in Rk:

FK(x)(y) := (〈Fi1(x), y〉, . . . , 〈Fik(x), y〉). (5)

Now, we can introduce the following two variational inequalities:

(VVIK) Find x̄ ∈ D such that FK(x̄)(x− x̄) /∈ −Rk
+ \ {0}, ∀x ∈ D;

(w-VVIK) Find x̄ ∈ D such that FK(x̄)(x− x̄) /∈ −int Rk
+, ∀x ∈ D.

The sets of their solutions will be denoted by Sol(VVIK) and Sol(w-VVIK), respectively.
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Remark 1 When the cardinality of K is greater than one (VVIK) and (w-VVIK) actually
are vector variational inequalities; otherwise, if K is a singleton, they become classical
(i.e. scalar) variational inequalities. Notice also that for K = Km we recover the original
vector variational inequalities and we have

Sol(VVIKm) = Sol(VVI) (6)

Sol(w-VVIKm) = Sol(w-VVI). (7)

Theorem 1 The following equality holds:

Sol(w-VVI) =
⋃

∅6=K⊂Km

Sol(VVIK). (8)

Proof. We will firstly prove the inclusion ”⊂” in (8). Consider an arbitrary point
x̃ ∈ Sol(w-VVI). By (4) we infer the existence of a vector ξ̃ = (ξ̃1, . . . , ξ̃m) ∈ Rm

+ \ {0}
such that x̃ ∈ Sol(VIξ̃), i.e.,

〈
∑m

i=1ξ̃iFi(x̃), x− x̃〉 ≥ 0, ∀x ∈ D. (9)

Consider the set K̃ := {i ∈ Km | ξ̃ > 0}. This set is nonempty, since ξ̃ ∈ Rm
+ \ {0}.

Denoting by k the cardinality of K̃, it follows that K̃ = {i1, . . . , ik} for some indices
i1 < . . . < ik from Km.

Consider the vector η̃ = (η̃1, . . . , η̃k) ∈ int Rk
+, defined by

η̃j := ξ̃ij for all j ∈ {1, . . . , k}.

Then (9) can be rewritten as

〈
∑k

j=1η̃jFij(x̃), x− x̃〉 ≥ 0, ∀x ∈ D,

which shows that x̃ ∈ Sol(VIK̃,η̃) := {x̄ ∈ D | 〈
∑k

j=1η̃jFij(x̄), x− x̄〉 ≥ 0, ∀x ∈ D}.
By applying Lemma 1 for (Fi1 , . . . , Fik) instead of (F1, . . . , Fm), we obtain that⋃

η∈ int Rk
+

Sol(VIK̃,η) ⊂ Sol(VVIK̃) ⊂ Sol(w-VVIK̃) =
⋃

η∈Rk
+\{0}

Sol(VIK̃,η), (10)

where Sol(VIK̃,η) := {x̄ ∈ D | 〈
∑k

j=1ηjFij(x̄), x − x̄〉 ≥ 0, ∀x ∈ D} for any vector

η = (η1, . . . , ηk) ∈ Rk
+.

Since x̃ ∈ Sol(VIK̃,η̃) ⊂
⋃

η∈ int Rk
+

Sol(VIK̃,η), it follows from (10) that x̃ ∈ Sol(VVIK̃),

hence x̃ ∈
⋃

∅6=K⊂Km
Sol(VVIK). Thus the inclusion ”⊂” in (8) is true.

In order to prove the inclusion ”⊃” in (8), let x̂ ∈
⋃

∅6=K⊂Km
Sol(VVIK) be arbitrarily

chosen. Then there exists a set of indices K = {i1, . . . , ik} ⊂ Km such that i1 < . . . < ik
and x̂ ∈ Sol(VVIK).
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By applying Lemma 1 for (Fi1 , . . . , Fik) in the role of (F1, . . . , Fm), we obtain that⋃
η∈ int Rk

+

Sol(VIK,η) ⊂ Sol(VVIK) ⊂ Sol(w-VVIK) =
⋃

η∈Rk
+\{0}

Sol(VIK,η), (11)

where Sol(VIK,η) := {x̄ ∈ D | 〈
∑k

j=1ηjFij(x̄), x − x̄〉 ≥ 0, ∀x ∈ D} for any vector

η = (η1, . . . , ηk) ∈ Rk
+.

Since x̂ ∈ Sol(VVIK), it follows by (11) that x̂ ∈
⋃

η∈Rk
+\{0}

Sol(VIK,η), i.e., there exists

η̂ = (η̂1, . . . , η̂k) ∈ Rk
+ \ {0} such that

〈
∑k

j=1η̂jFij(x̂), x− x̂〉 ≥ 0, ∀x ∈ D. (12)

Taking into account that K = {i ∈ Km | ∃ j ∈ {1, . . . , k} such that i = ij} and

i1 < . . . < ik, we can define a vector ξ̂ = (ξ̂1, . . . , ξ̂m) ∈ Rm by

ξ̂i :=

{
η̂i if i = ij for some j ∈ {1, . . . , k}
0 if i ∈ Km \K.

Then we have
∑m

i=1 ξ̂iFi(x̂) =
∑k

j=1 η̂jFij(x̂). Hence (12) becomes

〈
m∑

i=1

ξ̂iFi(x̂), x− x̂〉 ≥ 0, ∀x ∈ D,

which means that x̂ ∈ Sol(VIξ̂). On the other hand, it is easily seen that ξ̂ ∈ Rm \ {0},
since η̂ ∈ Rk

+ \ {0}. By (4) we infer that x̂ ∈ Sol(w-VVI). Thus the inclusion ”⊃” in (8)
is true. �

Remark 2 Theorem 1 shows that the vector variational inequalities are Pareto reducible,
in the sense that every solution of the vector variational inequality Sol(w-VVI) is a solution
of at least one “reduced” variational inequality of type Sol(VVIK), with K ⊂ Km.
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